Extended Gauss–Markov Theorem for Nonparametric Mixed-Effects Models
نویسندگان
چکیده
منابع مشابه
Bayesian Wavelet Shrinkage for Nonparametric Mixed-effects Models
The main purpose of this article is to study the wavelet shrinkage method from a Bayesian viewpoint. Nonparametric mixed-effects models are proposed and used for interpretation of the Bayesian structure. Bayes and empirical Bayes estimation are discussed. The latter is shown to have the Gauss-Markov type optimality (i.e., BLUP), to be equivalent to a method of regularization estimator (MORE), a...
متن کاملNonlinear nonparametric mixed-effects models for unsupervised classification
In this work we propose a novel estimation method for nonlinear nonparametric mixed-effects models, aimed at unsupervised classification. The proposed method is an iterative algorithm that alternates a nonparametric EM step and a nonlinear Maximum Likelihood step. We perform simulation studies in order to evaluate the algorithm performances and we apply this new procedure to a real dataset.
متن کاملNonparametric mixed effects models for unequally sampled noisy curves.
We propose a method of analyzing collections of related curves in which the individual curves are modeled as spline functions with random coefficients. The method is applicable when the individual curves are sampled at variable and irregularly spaced points. This produces a low-rank, low-frequency approximation to the covariance structure, which can be estimated naturally by the EM algorithm. S...
متن کاملNonparametric Bayesian Mixed-effects Models for Multi-task Learning
In many real world problems we are interested in learning multiple tasks while the training set for each task is quite small. When the different tasks are related, one can learn all tasks simultaneously and aim to get improved predictive performance by taking advantage of the common aspects of all tasks. This general idea is known as multi-task learning and it has been successfully investigated...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Multivariate Analysis
سال: 2001
ISSN: 0047-259X
DOI: 10.1006/jmva.2000.1930